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Abstract—Wireless networks nowadays are ubiquitous in our

daily life. Due to the open channel nature, wireless networks

are vulnerable to eavesdropping attacks. Though wireless con-

versation can be encrypted against eavesdropping, attackers can

still infer a user’s activities via traffic analysis on encrypted

data. Nevertheless, previous inference methods usually have the

limitation that they can only achieve a relatively high accuracy

in a specific domain. In this paper, we propose a smart spying

strategy that can infer a user’s activities of multiple domains with

a higher accuracy. We also develop a prototype tool on top of

this strategy to conduct experiments. The evaluation results show

our strategy works effectively in activity inference on encrypted

data, with an accuracy rate as high as 99.17%.

Index Terms—Wireless Networking; Eavesdropping; Security

Attack; Deep Learning; Neural Networks; Activity Inference.

I. INTRODUCTION

Wireless networks nowadays are ubiquitous in our daily
life. In wireless networks, a transmitter broadcasts wireless
signals over the air, and any receiver within the transmitter’s
power coverage is able to receive the signal and decode the
data from the signal. Such an open channel nature makes
wireless communication vulnerable to eavesdropping attacks
[1]–[6]. Once the transmitted data is obtained by an attacker,
it can further decode the message to infer the user’s sensitive
activities (e.g., voice or video chatting) or even steal the user’s
private information (e.g., password and personal information),
which is carried in the eavesdropped data.
A simple yet efficient method to prevent such information

leakage on wireless communication is to encrypt the trans-
mitted data [3], such that it is difficult for the eavesdropper
to decode useful information. Researchers have proposed
multiple encryption schemes to prevent sensitive information
leaked to eavesdroppers [7]–[10]. However, data encryption
does not stop the attacker from exploring new ways to spy
on users. Through traffic analysis [11], [12] on the patterns
or statistic results of side-channel information, attackers can
successfully infer a user’s activities on encrypted data [13]–
[17].
However, these attacks usually only utilized the statistic

results of features from a specific domain to perform activity
inference. Consequently, they can only achieve a relatively
high accuracy of user activity inference in a corresponding
domain (e.g., APP usages [13], [14], spoken phrases [15],
motions and behaviors [16], [17]). In this paper, we aim to
overcome this limitation and improve the inference accuracy
by proposing a smart spying strategy. This strategy can infer

a user’s activities of multiple domains with a higher accuracy
on the encrypted data. The core idea behind this smart spying
strategy is: 1) besides the statistic results of side-channel
information, encoding the encrypted data to improve the
data representativeness; 2) developing a fusion Deep Neural
Network (DNN) model which integrates multiple traditional
neural networks to improve the learning abilities. On top of
this strategy, we develop a prototype tool called, SS-Infer
(i.e., Smart Spying-Infer), which can efficiently infer a user’s
activities in real-world scenarios.
Specifically, we develop a mechanism to encode the en-

crypted data. In this way, our system can capture the char-
acteristics concealed in the data payload, which are ignored
by previous methods. Moreover, we design a classification
model that involves multiple neural networks, and takes the
advantage of multiple concatenated hidden layers to achieve
a high classification accuracy. In particular, we first utilize
the Convolutional Neural Network (CNN) to learn the spatial
dependency features among the encoded data; and then adopt
the Long Short-Term Memory (LSTM) to learn the temporal
dependency features on the results from the first step. Finally,
we combine the spatial-temporal features from previous steps
with the flow features directly extracted from network traffic
to improve the classification accuracy. With this proposed
architecture, our evaluation results show that SS-Infer can
achieve a classification accuracy rate as high as 99.17% when
identifying a user’s real-world activities.
The remainder of this paper is organized as follows. In

Section II, we discuss the preliminaries and related work. In
Section III, we introduce the system design of SS-Infer. Next,
we present and discuss the experimental setups and results
in Section IV. Finally, we discuss and conclude this paper in
Section V.

II. PRELIMINARIES AND RELATED WORK

In what follows, we briefly describe the background knowl-
edge and related work of activity inference.

A. Wireless Eavesdropping

Eavesdropping attacks in wireless networks usually fall in
two categories [4]: (1) passive eavesdropping and (2) active
eavesdropping. Passive eavesdropping is also known as non-
evasive eavesdropping, where the adversary only monitors and
intercepts the data traffic between a transmitter and a receiver
without any interference towards the transmit signals [18]. On



the other hand, an active eavesdropping adversary may actively
intercept, interfere or even modify the transmit signals in
favor of its eavesdropping performance [19]. Activity inference
usually belongs to passive eavesdropping.

B. Transmission Encryption

To defend against the eavesdropping attacks, multiple se-
curity protocols have been proposed to preserve the confi-
dentiality of the data traffic during the transmissions. For
example, the Wi-Fi Protected Access II (WPA2) protocol has
been widely adopted in modern wireless routers to secure the
wireless communication at the MAC layer [20], [21]. Further,
application layer encryption is also widely adopted to defend
against eavesdropping. Examples of application layer encryp-
tion include Hypertext Transfer Protocol Secure (HTTPS),
Pretty Good Privacy (PGP), Message Security Protocol (MSP)
and etc [22].

C. Inference on Encrypted Data

Although it is difficult to directly decode the encrypted data,
an eavesdropper can still infer a user’s activities by analyzing
different patterns of the network traffic [13]–[17]. For example,
the work in [14] presents a hierarchical classification system to
identify a user’s online activities. The study in [15] proposes a
spoken phrase classifier over the encrypted VoIP conversation.
In [13], the authors analyze the data traffic of android APPs
to detect and track a user’s specific actions.
However, previous works only analyze features of a user’s

activities from a specific domain, they cannot be applied
in activity inference of multiple domains. In this work, we
attempt to design a smart spying strategy to overcome this
limitation and further improve the inference accuracy. Towards
this goal, 1) besides the statistics results of side-channel
information, we encode the encrypted data to improve the
data representativeness; 2) we develop a fusion DNN model
which integrates multiple traditional neural network models to
improve the learning abilities.

III. SYSTEM DESIGN

In this section, we first briefly introduce the architecture of
SS-Infer, then present the technical details of each component.

A. Overview

Different network activities (e.g., browsing a website,
streaming a video, making a VoIP call) indicate different
behaviors in the level of traffic flows, rather than the behaviors
of single packets. Normally, a semantically complete flow
of traffic is the data transmitted during an active connection
between two entities. We consider exclusively TCP/IP traffic
flows in this paper, as they widely exist in today’s networks
and can be easily extended to other traffic types. As Figure 1
shows, there is a connection between Entity 1 and Entity 2, a
traffic flow is transmitted through the connection. Usually, a
traffic flow is composed of multiple data packets in transmis-
sion. We consider a wireless eavesdropper that can intercept
data packets of different connections. According to the TCP/IP

protocol, the intercepted packets will be then aggregated and
grouped into traffic flows of different connections [23]. We
further assume that the transmitted data is encrypted to prevent
wireless eavesdropping attacks such that the eavesdropper
cannot infer the user’s activities by directly decoding the
intercepted traffic.
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Fig. 1. Network traffic flow.

In this paper, we develop SS-Infer to infer a user’s activities
from encrypted wireless traffic data. The core idea behinds
SS-Infer is to infer activities on top of a deep learning based
traffic classifier, which is a fusion DNN model to integrate
multiple traditional neural networks to improve the learning
abilities. Moreover, other than traditional methods which only
learn statistic information, SS-Infer can also learn spatial and
temporal dependencies from the encrypted data to improve the
information representativeness. SS-Infer aims to guarantee a
high accuracy rate and maintain a relatively low computational
cost.
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Fig. 2. System design of SS-Infer.

As Figure 2 shows, SS-Infer integrates both the internal
layers of CNN and LSTM, such that it can capture not only
spatial dependencies for the data in each packet, but also
temporal dependencies among different packets. Besides, it
also directly extracts flow features from the entire network
traffic as additional features. Finally, SS-Infer makes the



TABLE I
FLOW FEATURES.

Category Feature Description

Header Information

Source Port Port number at source
Destination Port Port number at destination
Source Address IP address of source

Destination Address IP address of destination

Statistical Information

Forward Inter-arrival Time (mean, min, max, std) Inter-arrival time for forward packets in a traffic flow
Backward Inter-arrival Time (mean, min, max, std) Inter-arrival time for backward packets in a traffic flow

Packet Length (mean, min, max, std) Number of bytes for packets in a traffic flow
Active Time The time a flow was active
Idle Time The time a flow was idle

Out of Order Count The total number of packets that arrive destination out of order in a traffic flow
Bytes per Second The number of bytes transmitted per second in a traffic flow
Packets per Second The number of packets transmitted per second in a traffic flow

classification based on the combination of spatial-temporal
vector and flow feature vector.

B. Learning Spatial-temporal Features

1) Data Encoding: Though encrypted, the data payload
in a packet still contains information indicating a user’s
activities. In particular, the spatial and temporal correlation
relationships among different packets can both contribute to
the classification for different activities. SS-Infer learns these
features to improve the data representativeness. Specifically,
we adopt One-Hot Encoding (OHE) to represent the encrypted
data, and we only take into consideration of packets with data
payload larger than 300 bytes. The OHE vector is the binary
code of each byte, i.e., an 8-dimensional vector. To improve
performance, only the first 100 bytes, middle 100 bytes and
last 100 bytes of a packet are encoded.
2) Learning Intermediate Vector through CNN: CNN is

designed with the ability to learn the spatial dependencies.
Here, we adopt internal layers of CNN to extract the spatial
dependencies from each packet as the intermediate vector. This
vector is the inputs of LSTM. Assume filter w works with a
window size of s, mi is the i-th generated feature, ci is the
i-th column of the data encoding matrix, b is a bias, and f is
ReLUs. We get:

mi = f(w ⇧ ci:i+s�1 + b), (1)

Then, a max-over-time pooling operation is applied to the fea-
ture map m = [m1,m2, ...,m300�h+1] to get the intermediate
vector:

m̂ = max{m}. (2)

3) Learning Spatial-temporal Vector through LSTM:

LSTM is suitable for learning temporal features, especially
for the long-term temporal dependencies. We apply internal
layers of LSTM after the convolution layers to learn the
spatial-temporal dependencies. It takes the intermediate vector
of each packet in order as inputs. Assume there are p valid
packets in a flow, the input sequence is therefore denoted as

{m̂1, m̂2, ..., m̂p}. Through a series of transitions by a set of
adaptive multiplicative gates in these internal layers of LSTM,
we get the output vector {ŷ1, ŷ2, ..., ŷp}, which is the spatial-
temporal vector.

C. Extracting Flow Features

In addition to spatial-temporal features, we also extract flow
features directly from the traffic flow to improve the data
representativeness. There are two categories of flow features,
the header information and the statistical information. We list
the used features and their descriptions for both two categories
in Table I.

• Header Information: This category of features in-
cludes the fields in the header of a data packet (e.g.,
source/destination port, source/destination address). Even
when the data is encrypted, the header information in
network layer and transport layer are still available. Such
information is useful for activity inference. For instance,
if the connection is established between a user and an
IP belonging to YouTube, it is easy to infer that the user
was watching streaming videos.

• Statistical Information: These features can be calculated
from the entire traffic flow, such as the max (or min,
or average) inter-arrival time between two packets, the
max (or min, or average) packet length, total number of
packets that arrive at the destination out of order. These
statistical features are easy to calculate even when data
is encrypted.

D. Final Classification

The vector used for final classification is the combination
of the spatial-temporal vector and the flow feature vector. SS-
Infer inputs the final vector to a dense layer and a softmax
layer as shown in Figure 2 to perform the final classification.

IV. EVALUATION

In this section, we first introduce the experimental setups,
then we evaluate the performance of the SS-Infer system and
analyze the influence of size of flow features.



A. Experimental Setups

In our experiments, we use a high-performance workstation
with four NVIDIA GeForce RTX 2080 GPUs, one 14-core
Intel Core i9-9940X CPU and 128GB Memory to perform
the wireless traffic classification on top of TensorFlow [24].
We use the UNB ISCX Network Traffic Dataset [25] for
evaluation. It is captured from real world networks and the
traffic flows are labeled manually as ground truth. Meanwhile,
the UNB ISCX Network Traffic Dataset also contains the
original encrypted data, which is needed for the classification
in SS-Infer. The dataset includes seven types of encrypted
traffic. Table II shows the details of the traffic types and the
associated activities.

TABLE II
LIST OF TRAFFIC TYPES AND THE ASSOCIATED ACTIVITIES.

Traffic Activity

Web Browsing Browsing webs through Firefox and Chrome

Email Sending/receiving email through SMTP/POP3/IMAP

Chat Online chat through Skype, AIM, ICQ, etc

Streaming Video streaming by watching Vimeo and Youtube

File Transfer File transfer through FTP using Filezilla

VoIP Voice call through Facebook, Skype and Hangouts

P2P P2P download through uTorrent and Transmission

We adopt a 10-fold cross-validation to train and evaluate
the performance of the SS-Infer system. The accuracy rate in
the evaluation is defined as:

Accuracy rate =
Number of correctly classified flows

Total number of flows
.

B. Classification Performance

We first evaluate the classification performance of SS-Infer.
In particular, we consider three classification models: Model1
is a neural network only using the spatial-temporal features for
classification; Model2 is a neural network only using the flow
features for classification, and Model3 combines the spatial-
temporal features and the flow features, which is adopted in
SS-Infer.
Figure 3 shows the evaluation results of the three different

models. We can see that when only using spatial-temporal
features or flow features to infer a user’s activities, the accu-
racy rates are 93.63% and 85.26% for Model1 and Model2,
respectively. Though the accuracy rate is already relatively
high for activity inference, our SS-Infer design (i.e. Model3)
can achieve a more accurate result, with an accuracy rate being
as high as 99.17%.

C. Size of Flow Features

We also evaluate the impact on SS-Infer’s performance
when the number of flow features changes. The results are
shown in Table III. This evaluation exhibits the changes of the
accuracy rate and the computational time when we increase

Fig. 3. Classification performance.

the number of flow features from 0 to the maximum of 21.
Note that we define the computational time as the multiple
of the baseline computational time (which is measured as the
real time duration for the computation when the number of
feature is 0).

TABLE III
THE ACCURACY RATE AND COMPUTATIONAL TIME FOR DIFFERENT

NUMBERS OF FLOW FEATURES.

Number 0 5 10 15 21

Accuracy (%) 93.36 98.53 99.10 99.15 99.17

Time 1.00 1.02 1.05 1.10 1.18

As Table III shows, the accuracy rate increases quickly
until the number reaches 10, and the corresponding accuracy
rate achieves 99.10%. After that point, the improvement of
accuracy rate is relatively slight with the increase of the num-
ber of flow features, while the computational time continues
increasing when the number increases. These results indicate
that 10 flow features is a good choice for the tradeoff between
the classification accuracy rate and the computational time.
However, a powerful adversary can always choose to use all
flow features to achieve the best accuracy rate in user activity
inference.

V. CONCLUISION

In this paper, we design a smart spying strategy, named
SS-Infer, which can accurately and efficiently infer a user’s
activity from encrypted wireless traffic. Comparing with other
methods, SS-Infer has a stronger learning ability by integrating
the advantages of multiple neural networks, and a better data
representativeness by learning both spatial-temporal features
and flow features. The evaluation results show that SS-Infer
can achieve an accuracy rate as high as 99.17% in user activity
classification.
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