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Abstract—High Performance Computing (HPC) has been em-
ployed in many fields such as aerospace, weather forecast,
numerical simulation, scientific research etc. Security of HPC,
especially anomaly/intrusion detection, has attracted many atten-
tions in recent years. Given the heavily instrumented property
of HPC systems, logs become an effective and direct data source
that can be utilized to evaluate the system status, further, to
detect anomalies or malicious users. In this paper, we offer a
novel perspective, treating the anomaly detection in HPC as a
sequential decision process, and further applying reinforcement
learning techniques to learn the state transition process, based on
which we build a framework named as ReLog to detect anomalies
or malicious users. Besides, a common challenge of employing
machine learning techniques is lacking sufficient data, we provide
a generative adversarial network (GAN)-based solution to gener-
ate sufficient training data in HPC. The experimental validations
are conducted based on real-world collected MPI logs, and our
results demonstrate a 93% of detection accuracy on the collected
dataset.

Index Terms—High performance computing, security, rein-
forcement learning, defenses and attacks, log analytics

I. INTRODUCTION

High Performance Computing (HPC) has been widely used
in domains that require intensive computing such as scientific
numerical simulation, financial prediction, weather forecast
etc. The research on HPC in the past mainly focused on
how to improve the computing performance of the system.
Security of HPC has been an active research topic in recent
years, especially of how to detect unwanted anomalous jobs
or malicious abusive users [1]–[5].

The security problem in HPC is somehow very much similar
to those in typical IT systems. As they are both connected
to the Internet, and they usually run on Linux-based systems
[2]. Besides inherited vulnerabilities in typical IT systems,
some vulnerabilities in HPC systems can have disastrous
consequences. For example, malicious users in HPC systems
can lead to data leakage, and misuse of computing cycles may
cause delay or negative affect on other jobs [1].

Typically, HPC systems can be decoupled into 4 layers
[6], [7]: application layer, middleware layer, operating system
layer and network layer. In nowadays systems, each of the
4 layers has been well-instrumented for security evaluation.
Information like percentage of CPU time, memory utilization,
I/O time, MPI operations, access information etc. are all
well-logged and can be used to analyze and evaluate the
performance and security of HPC. Log analytics in HPC has

been a more straightforward and effective strategy to secure
HPC systems against malicious users [2], [5], [8].

There are many anomaly/intrusion detection methods based
on log analytics in HPC have been proposed [2]–[4], especially
when machine learning techniques are involved [5], [8]. Ma-
chine learning techniques such as deep learning, support vector
machine (SVM) have their unique advantages in dealing with
large volumes of logs generated by HPC on each computing
node [9].

Nevertheless, anomaly/intrusion detection based on log an-
alytics in HPC is not quite the same as traditional classi-
fication problems. As the logs in HPC are generated con-
tinuously when the system is running, thus the input of
anomaly/intrusion detection mechanism is also streaming data.
We need to parse the streaming data into tokens, which is
defined as a small group of log lines, based on which we can
extract feature vectors. Further the feature vectors can be used
to perform anomaly/intrusion detection.

The decision of whether the evaluated user is malicious or
not depends not only the pattern of all feature vectors, but
also the order. Therefore, we can treat detection process of
anomaly/intrusion detection in HPC as a sequential decision
process, in which final decision of the normality of a user
depends on a set of small decisions based on all previous
feature vectors. When we think the problem from a sequential
decision perspective, we can employ reinforcement learning
techniques to model the anomaly/intrusion detection problem
in HPC.

In this paper, we propose a framework, named as ReLog,
based on reinforcement learning techniques to perform log
analytics in HPC for anomalous user detection. We observed
that MPI operations used by computing nodes are usually
a subset of pre-defined operations [10]. Thus, we construct
feature vectors based on MPI logs and treat them as differ-
ent states in reinforcement learning. Feature vectors can be
obtained from parsing of logs using sliding windows. The
ultimate reward comes from final classification decision. When
malicious users are detected, the reward will reach a maximum
value.

Lacking sufficient training data is a common challenge in
many reinforcement learning problems, and various synthetic
data generation methods have been studied in machine learning
[11]. We provide a synthetic data generation method based
on Generative Adversarial Networks (GAN) [11] in HPC to
tackle this challenge. When no anomalous data are available,



we can get initial data through Gaussian-based sampling
from normal data through changing sampling parameters. In
scenarios where we have only a small number of available
data, we can generate enough data through GAN.

The major contributions of this paper can be listed as
follows:
• We build a reinforcement learning-based framework

named as ReLog to perform log analytics in HPC. We
provide a new perspective, treating the anomaly/intrusion
detection as a sequential decision problem, to detect
anomalous/malicious users.

• Based on GAN, we give a solution to generating enough
training data based on available logs, such that deep
neural network models can be fully trained.

• We collect real-world MPI logs and perform comprehen-
sive experiments to validate ReLog and compared it with
existing other anomaly/intrusion detection mechanisms.
The results show that ReLog can achieve 93% of the
detection accuracy on our collected dataset.

The background and related work is shown in Section II;
Section III elaborate the design of ReLog; Experimental results
are given in Section IV and Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we give the detailed background of log-
based anomaly/intrusion detection in HPC systems and the
mathematical model of reinforcement learning, which is the
foundation of our ReLog framework.

A. Log-based anomaly/intrusion detection in HPC systems

Anomaly/intrusion detection based on logs in HPC systems
using machine learning techniques usually have four basic
steps: log collection, log parsing, filtering/feature extraction
and anomaly/intrusion detection. The basic workflow is shown
in Fig. 1.
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Fig. 1. General workflow of using logs to detect intruders [5], [9], [10], [12],
[13].

Log collection is the foundation of log analytics. Reliability,
availability and serviceability (RAS) logs of HPC systems can
collect information from different hardware and software sen-
sors [8]. Benefited from the heavily instrumentation property
in HPC, various logs are generated both from hardware and
software at different layers [8]. Most of HPC systems are based
on Linux operating systems, log files in Linux systems are

stored in text form under the directory of /var/log and its sub-
directories, which record the information about system, kernel,
access control, package managers, etc.

Log parsing aims to get a structured representation of
system information contained in raw logs, which requires a
lot of domain knowledge to design rule-based detectors [14]–
[16]. As the collected raw data usually is unstructured text
files with different formats and semantics. An online streaming
method is proposed in [5] using the longest common sub-
sequence to parse logs. Beschastnikh et al. [17] uses regular
expressions to parse log lines of interest. Source code are
also leveraged in [18] to get structured files. Data mining
approaches are employed in [19], [20] to parse log files based
on log characteristics.

Filtering/feature extraction is a process to group the sep-
arated events from the log parsing step and encode them
as feature vectors for machine learning techniques. Grouping
techniques such as fixed windows, sliding windows etc. can
be used to form feature vectors [9].

Anomaly/intrusion detection involves classifying extracted
feature vectors into different patterns. One strategy is to
take logs as a language model, thus building relationships
between logs and normal/abnormal behaviors. Long Short-
Term Memory (LSTM) models are employed in [5] to detect
malicious users through treating logs as a structured language
model. Besides, a rule ensemble method is adopted in [10] to
connect logs with source codes. The relationship of logs and
source codes can be further used to predict malicious users.

Based on the above workflow, we designed a novel
anomaly/intrusion detection mechanism in this work, in which
we treat the detection process as a sequential decision problem,
thus reinforcement learning techniques can be employed to
improve the detection performance.

B. Reinforcement learning

Reinforcement learning process is usually modeled
as a Markov decision process (MDP) with a state
space S, an action space A and the Markov
property in terms of stationary transition dynamics as
p(st+1|s1, a1, ..., st, at) = p(st+1|st, at) of any sample
trajectory s1, a1, s2, a2, ..., sT , aT , s ∈ S, a ∈ A with initial
state distribution p(s1). The reward/cost function is termed
as S × A → R. The reward rγt =

∑∞
k=t γ

k−tr(sk, ak) is the
total discounted reward starting from time t, 0 < γ < 1 is the
discount factor.

The rule of selecting an action given a state in MDP is
named as policy functions, which have the form of πθ : S →
P (A), P (A) is the probability distribution over the actions.
θ ∈ Rn is a vector of parameters of the policy function. Value
functions are the expected total discounted reward. For a given
state s, the value V π(s) = E[rγ1 |s;πθ] and for a given action a
over state s, the value Qπ(s, a) = E[rγ1 |s; a;πθ]. Therefore, we
can write the general objective of the reinforcement learning
as an expectation J(πθ) = Eak∼πθ [r(s, a)] [21].

There are three main different perspectives to solve J(πθ):



• Value function algorithms [22] update value functions
after each sample trajectory. The optimal action at each
state is the action that can achieve optimal value functions
V∗ or Qπθ∗ according to Bellman optimality equations, in
which V∗(s) = max

a
E[Rt+1+γV∗(St+1)|St = s,At = a]

and Qπθ∗ (s, a) = E[Rt+1 + γmax
a′
Qπθ∗ (St+1, a

′)|St =

s,At = a]. Rt+1 is the transition reward from state
St = s to St+1. St, St+1 ∈ S, At ∈ A. a′ is the action
at state St+1.

• Policy gradients [23] update policy parameter vector θ
directly through θ ← θ+ α∇θJ(θ), in which ∇θJ(θ) ≈∑
i(
∑
t∇θlogπθ(ait|sit))(

∑
t r(s

i
t, a

i
t)) if the commonly

known REINFORCE algorithm is used. α is an ajustable
parameter to control the step size. ait, s

i
t denote the action

and state at time t from sample trajectory {τ i}.
• Actor-critic algorithms [24] combine both the value

functions and policy gradient update methods. Using
value functions, e.g., advantage functions, to estimate∑
t r(s

i
t, a

i
t) of ∇θJ(θ) and following the same update

strategy in (ii).
We model our anomaly/intrusion detection in HPC as a

sequential decision problem. Each feature vector is modeled as
a state, and we employ value function algorithms to update the
transition reward. Based on the cumulative reward metric, we
make the decision of whether the evaluated user is anomalous
or not.

III. RELOG

We name the proposed anomaly/intrusion detection frame-
work in HPC systems through LOG analytics based on RE-
inforcement learning techniques as ReLog. Motivation and
design details are articulated in this section. We first give the
overall architecture of ReLog as shown in Fig.2. Details about
the ReLog will be elaborated in following subsections.
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Fig. 2. Overall architecture of ReLog.

A. Motivation

The Message Passing Interface (MPI) is a communication
protocol that specifies how HPC passes information among
computing nodes and clusters. There are various implementa-
tions of MPI, including MPICH, Open MPI etc., and SKaMPI
is a benchmark that measures the performance of an MPI
implementation on a specific hardware. It is an advanced
method for measurements, especially for collective operations
of MPI [25].

Unlike traditional classification problem in which they have
fixed input format, log analytics in HPC systems is a streaming
process as the generation of logs from a running system is
continuous. The streaming logs can be parsed into tokens,
which is a small group of lines from logs, further using
the tokens to extract feature vectors. As we are detecting
anomalous users from their behavior history, i.e., whether
an evaluated user is anomalous or not depends not only the
pattern of all feature vectors, but also the order. We can treat
the detection process as a sequential decision process, the
final decision depends on the cumulative decisions from each
feature vector and from each transition of two feature vectors.

Reinforcement learning is a sequential decision process. The
goal of reinforcement learning is to achieve the maximum
reward at the end of all decisions. In log analytics of HPC
systems, what we are interested in is also the final decision
after analyzing all the feature vectors. The similarity of these
two problems inspires us to find a solution to detecting
anomalous users through log analytics in HPC systems through
reinforcement learning techniques.

B. Design of ReLog

The basic idea of ReLog is to treat the anomaly/intrusion
detection based on logs of HPC systems as a reinforcement
learning problem. As we observed that in MPI logs, the MPI
operations used by computing nodes are usually a subset of
pre-defined operations [10], thus we can build feature matrix
and treat the feature vectors as states in reinforcement learning.
Using the idea of sliding window, we can parse log files of MPI
logs into a series of states. Therefore, feature vectors extracted
from logs can be employed as a state transition process in
reinforcement learning. Thus, value function algorithms [22]
can be employed to obtain the ultimate reward, and further to
classify the evaluated users.

ReLog framework has two steps: training and test. We
first train the reinforcement learning model based on feature
vectors and then test the new logs on the trained model to
classify normal and anomalous users.

In the training process, we first build the state space S from
logs through counting frequencies of each operation. Each
dimension of feature vector denotes one type of MPI operation.
The type information of MPI operation is pre-defined [10]. To
reduce complexity or dimensions of feature vectors, we can
only include information of the top n most occurred operations
rather than all. Because jobs running on HPC systems usually
are data-intensive jobs, which requires frequent information
exchange between computing nodes, and no exception for
malicious attackers. Therefore, it opens the feasibility of using
on the top n most occurred MPI commands to diagnose the
running status.

Besides the feature vector dimension, we also need to assign
appropriate size of sliding windows, such that the frequency
information can be counted within that window. The size of
sliding window should reflect dynamics of the job running
on HPC systems; thus, a too large or too small size of the



window will make the training and test steps too sensitive or
too insensitive.

When the examined feature vectors are detected as behav-
iors from an anomalous user, we set this scenario has the
maximum reward. Contrarily, when the feature vectors are
classified as behaviors from a normal user, we set the reward
as 0, i.e., the minimum reward. Thus, the training process can
be treated as a procedure learning the reward of each state
transition. In the testing process, we’ll get a cumulative final
reward from the state transitions of the testing feature vectors.
Based on the reward we can classify the feature vectors of the
evaluated logs into normal or abnormal user.

C. Synthetic data generation

In real world log analytics of HPC, usually it is not easy to
obtain enough training data, especially malicious training data
for ReLog. Other cases that require synthetic data generation
include (i) when the training data is poorly sampled, i.e., it
focuses only on some specific regions, while samples from
other regions are necessary to train an efficient and general
model; and (ii) when required training data cannot represent
what we are looking for, or worse, it is twisted or noised by
some unknown reasons.

Synthetic data generation is a critical step in the training of
ReLog, there are many ways have been proposed to address
data generation problem [11], [26]. In ReLog, we need to
generate two kinds of data, both normal data and abnormal
data when the training data is limited. Generating synthetic
data based on existing available data is comparatively easier
than when there is no available data at all.

In case where no malicious data is available, we adopt a
Gaussian-based sampling method to generate malicious data
based on available normal data. The two parameters needed
are the mean value and the standard deviation. The probability
density distribution of the Gaussian distribution is denoted as:

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , (1)

in which x is the feature vector data. Through changing the
mean value and the variance of normal data, we can generate
anomalous feature vectors that are required in the ReLog
through sampling from the modified Gaussian distribution.

Given the available feature vectors, both normal and abnor-
mal, we plan to construct a Generative Adversarial Network
(GAN) [11] based synthetic data generator to generate more
normal and abnormal feature vectors to feed the training step
in reinforcement learning. In GAN, there are two players:
a generator G and a discriminator D. Let pdata denotes the
distribution that feature vectors are drawn from. The generative
model G aims to generate a probability distribution pg over
feature vector data x, which is an estimate of pdata. Typically,
the generator and discriminator are represented by two deep
neural networks. The objective of the GAN framework can be
shown as

min
G

max
D

V (D,G) =Ex∼pdata [log D(x)]

+ Ez∼pz(z) [log (1−D(G(z)))],
(2)

in which pz(z) is a prior on input noise variables.
The GAN let two players (G and D) play against each

other in a game. In ReLog, the feature vector data can also
be generated through the generative model. We train two deep
neural network models, generative model G and discriminator
model D. The two models will play the game to optimize
their own objective function. However, to avoid the problem
of finding an exact Nash equilibrium, which is challenging in
real world, here we use the accuracy of the generated data in
discriminator D as a stop requirement, which means after the
training process, when the generated data from G can have a
higher probability than the pre-set threshold to be misclassified
by D, the game stops. The probability is estimated by the
percentage of the generated data that are misclassified by D
into the real dataset samples in all the generated data.

IV. EXPERIMENTAL VALIDATIONS

We collect real-world MPI dataset from HPC systems and
validate ReLog framework in this section. Detailed experimen-
tal results are given, and analysis are specified.

A. Dataset

In our work, we use SKaMPI to collect the traces of
basic collective operations, such as MPI Bcast, MPI Reduce,
and so on. According to the communication process of
whether to consider the number of processors, we divide the
collective operations into two parts, processors-associating
(MPI Scatter, MPI Gather, etc.) and non-processors-
associating (MPI Bcast, MPI Redu, etc.). Thus, we
collect different processors and counts about different
collective operations, such as MPI Allreduce, MPI Allgather,
MPI Alltoall, MPI Bcast, MPI Gather, MPI Reduce,
MPI Scam, MPI Scatter etc.

In our experimental validation, we mainly focused on four
types of logs from directories of Isend Rev, Send Irecv,
Send Recv and Ssend Recv. Each of the directory has 24 log
files, 96 log files in total are used in our experiments.

B. Experimental results and analysis

We first analyze statistical properties of the collected
dataset, which is the foundation to construct feature vectors.
We chose 6 logs from the dataset and show frequency in-
formation of MPI operations in Fig. 3. The overall frequency
information of all logs are shown in Fig. 4. From the frequency
information depicted in the two figures, we can observe that
only a small number of MPI operations (around 30%) are
frequently executed, which paves the path for the application
of reinforcement learning frameworks.

1) Synthetic data generation: We divide the collected
dataset, which has 4× 24 log files, into two categories. Each
category has 4 × 12 log files. One category of logs is used
for training, while the other for testing. Initial anomalous
data are generated using Gaussian-based sampling method,
we generate sufficient anomalous training and testing feature
vectors based on the normal training and testing data through
changing the mean value of each dimension of the feature
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Fig. 3. The frequency information of the training logs
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Fig. 4. The overall frequency information of all the training logs

vectors while maintain the same variance of training and
testing data. We set the sliding window size as 150 to form
feature vectors in this group of experiments. In Fig. 5, we give
the relationship between the mean square error (MSE) and
the training iterations of GAN-based generation framework.
The experimental results show that at least 800 iterations are
needed in order to stabilize the MSE.

200 400 600 800 1000 1200
Iteration

0

500

1000

1500

2000

M
SE

Fig. 5. Relationship of MSE and training iterations.

TABLE I
RELATIONSHIP BETWEEN SLIDING WINDOW SIZE AND DETECTION

ACCURACY.

Window size 100 120 140 160 180 200 220
Detection accuracy 0.36 0.42 0.54 0.78 0.93 0.93 0.93

2) ReLog Training: To train an effective ReLog model, we
need to choose an appropriate sliding window size to form
feature vectors. In this group of experiments, we compare
the performance of ReLog under different size of the sliding
window. The relationship between the sliding window size and
detection accuracy is illustrated in Table I. It demonstrates
that when the window size is too small, the performance of
ReLog in detecting malicious users will suffer. However, as
the sliding window size increases to a point (size of 180
in our experiments), the performance of overall detection
accuracy tends to be stable, that’s because when the sliding
window reaches that point, the information contained in each
feature vector already can encode most of the classification
information.

3) Comparison of ReLog with other methods: To demon-
strate the performance of ReLog and show the advan-
tage of using reinforcement learning techniques to detect
anomaly/intrusion attackers. We compared ReLog with ex-
isting other anomaly/intrusion detection methods in terms of
detection accuracy and the time complexity. The methods
we compared include: DeepLog [5], which is a deep neural
network model employing Long Short-Term Memory (LSTM)
to treat logs as natural language sequences; Support Vector
Machine (SVN) method, an well-known supervised classifica-
tion method, which is used in [9] to detect anomaly patterns
of logs.

Detailed experimental results on our collected dataset is
shown in Table II. We can observe from the results that
SVM based detection method has the smallest time cost, that’s
because the training process involves only finding support
vectors, which has been well-solved and the complexity is
already optimized. DeepLog and ReLog has similar time
cost as a result of training deep learning models in both
frameworks. ReLog is especially time-consuming due to the
training of multiple deep neural networks in reinforcement
learning frameworks. However, ReLog has the best detection
performance than both DeepLog and SVM, which we believe
also contributed to the reinforcement learning models, which
refines the detection process into a sequential decision process.
The experimental results demonstrate the promising future
of reinforcement learning techniques in detecting anomalous
users in HPC systems.

V. CONCLUSION

With the rapid growing of HPC in terms of scale, complexity
and widely application in various fields, machine learning-
based security inspection will have a more fundamental impact
on HPC security. Anomaly/intrusion detection based on log



TABLE II
COMPARISON OF RELOG WITH OTHER EXISTING METHODS

Detection methods Time cost (seconds) Detection accuracy
DeepLog [5] 56 0.91

SVM [9] 13 0.86
ReLog 107 0.93

analytics provides a straightforward and effective strategy to
evaluate system status of HPC systems. we believe employing
machine learning techniques, especially deep learning model-
based frameworks such as reinforcement learning, to process
the huge volumes of generated logs will result in more
robust defense mechanisms for HPC systems than traditional
methods.

We offered a new perspective in this paper through em-
ploying reinforcement learning techniques to detect anomalies
based on MPI logs in HPC. The ReLog works through treating
the detection process as a sequential decision process. We
also provide a strategy to generate sufficient training data
for the training process in case of lacking enough data.
The experiments on real-world collected data demonstrate the
performance of our proposed methods. How to reduce the
complexity, adapt and refine reinforcement learning techniques
to log analytics in HPC systems will be our future work.
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benchmark for public benchmarking of mpi,” Scientific Programming,
vol. 10, no. 1, pp. 55–65, 2002.

[26] S. Tripathi, S. Chandra, A. Agrawal, A. Tyagi, J. M. Rehg, and V. Chari,
“Learning to generate synthetic data via compositing,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 461–470.


