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Abstract—The topology of a network is fundamental for build-
ing network infrastructure functionalities. In many scenarios,
enterprise networks may have no desire to disclose their topology
information. In this paper, we aim at preventing attacks that use
adversarial, active end-to-end topology inference to obtain the
topology information of a target network. To this end, we propose
a Proactive Topology Obfuscation (ProTO) system that adopts
a detect-then-obfuscate framework: (i) a lightweight probing
behavior identification mechanism based on machine learning is
designed to detect any probing behavior, and then (ii) a topology
obfuscation design is developed to proactively delay all identified
probe packets in a way such that the attacker will obtain a
structurally accurate yet fake network topology based on the
measurements of these delayed probe packets, therefore deceiving
the attacker and decreasing its appetency for future inference.
We show that ProTO is very effective against active topology
inference with minimum performance disruption. Experimental
results under different evaluation scenarios show that ProTO is
able to (i) achieve a detection rate of 99.9% with a false alarm
of 3%, (ii) effectively disrupt adversarial topology inference and
lead to the topology inferred by the attacker close to a fake
topology, and (iii) result in an overall network delay performance
degradation of 1.3% - 2.0%.

I. INTRODUCTION

The topology of a network is the fundamental information
for building network infrastructure functionalities, such as
path routing and packet forwarding. Many network applica-
tions require prior knowledge of the topology, especially for
applications built on top of overlay network techniques [1],
such as peer-to-peer (P2P) network, virtual personal networks
(VPN), content delivery networks (CDN) and voice over IP
(VoIP, e.g., Skype) [2]–[4]. In addition, network topology is
the essential information required in network diagnosis and
failure localization [5]–[8].

However, the knowledge of network topology can advance
network attackers’ malicious objectives, leading to more pre-
cise or effective attacks. For example, attackers can lever-
age topology information to craft advanced denial-of-service
(DoS) attacks to concentrate on important nodes or links
in a targeted network to maximize the attack impact [9]
or even conceal malicious activities by confusing the global
system failure monitoring algorithms [10]. Therefore, it may
not always be desirable or even prohibitive to disclose the
internal network topology to the outside, which is particularly
important for organizational/enterprise systems to protect com-
mercial interests and private information.

The undesirability or prohibition of disclosing network
topology does not necessarily discourage attackers from ac-

quiring such information by adversarial, active inference.
There are mainly two types of topology inference techniques
that can be used by attackers for the malicious purpose:
internally cooperative topology inference [11] and external
end-to-end topology inference (also called as tomography-
based topology inference) [12]. The former technique usu-
ally utilizes tools (e.g., traceroute or ping) and cooperates
with internal nodes to collect their corresponding response
messages to infer topology (e.g., assuming internal nodes
should respond to ping). As an alternative, external end-to-
end topology inference shows the promise of discovering the
topology through end-to-end path performance measurement
(e.g., inferring through packet delays or loss rates on end-to-
end paths) without internal nodes’ cooperation. Studies [12]–
[21] have shown that external end-to-end topology inference
can achieve a high accuracy rate.

For the purpose of ensuring network security, it is necessary
to develop countermeasures for defending against adversarial
topology inference. To combat internally cooperative topology
inference, network administrators can simply disable internal
routers’ response to traceroute or ping [22]. Advanced designs,
such as NetHide [23], can prevent topology leaking through
internally cooperative topology inference while keeping the
functionalities of traceroute and ping. However, these existing
techniques cannot defend against external end-to-end topology
inference, which poses a real and crucial threat to networks
considering that tomography based external measurement has
been supported by a number of network products and manufac-
turers (e.g., Ericson [18], Cisco [19], Microsoft [20], Huawei
[21]). Though these efforts aim to prompt the convenience of
network management for meritorious inference, they can also
be leveraged by malicious attackers.

In this paper, we focus on mitigating the risk of topology
leakage due to adversarial external end-to-end topology infer-
ence. As an attacker can perform topology inference based on
measuring the performance of probe packets going through
a target network, an intuitive way to defense is to detect
such probe packets then disable their forwarding. However,
this way usually results in that the attacker draws attention to
inference failure and then develops follow-on actions. Further,
the network topology is relatively static. Once acquiring the
topology information, the attacker does not need to frequently
update such information. This indicates that the detection rate
of a designed defense mechanism must be very high to prevent
the attacker from easily obtaining such information even for



once. As there always exists a tradeoff between detection rate
and false alarm, a higher detection rate generally indicates
a higher false alarm. Hence, simply denying forwarding any
potential probe packet will lead to preventing a fair amount
of legitimate traffic that is misidentified from going through
the network. To solve these issues, we propose a Proactive
Topology Obfuscation (ProTO) system that proactively de-
fends against adversarial topology inference.

There exist two major modules in ProTO: (i) a probing
behavior identification mechanism designed biased towards a
very high detection rate while allowing for a slight false alarm
and (ii) a topology obfuscation design proactively delaying all
identified probe packets in a way that the attacker will obtain
a structurally accurate yet fake network topology based on the
measurements of these delayed packets. ProTO aims to deceive
the attacker and decrease the possibility of further inference
attempts. The system does not disrupt any packet forwarding
inside the network, but only intentionally delays malicious
probe packets identified by the identification mechanism.
We implement and evaluate ProTO with various setups over
realistic network topologies. To the best of our knowledge,
ProTO is the first system designed against adversarial end-
to-end topology inference. There are several key designs and
contributions in ProTO to balance security and cost.
Identification of probing behavior: An attacker can disguise
their probe packets as regular data packets going through the
network, we propose a lightweight machine learning based
classifier for ProTO to identify probe packets. Through com-
bining offline self-training and online incremental updating,
the classifier achieves a very high detection rate of 99.9%
and also has a low false alarm rate of around 3% in our
experiments. We also adopt a voting-based strategy to ensure
improving the data representativeness in incremental updat-
ing, meanwhile maintaining a low computation overhead for
performance-sensitive network devices.
Topology obfuscation: We first formulate the model for
topology inference, and then adopt a min-max approach for
topology obfuscation: as the maximum-likelihood estimation
(MLE) in general minimizes the topology inference error, we
aim to disrupt the topology inference of MLE used by a
potential attacker. In particular, we propose the obfuscation
method to delay probe packets such that a fake topology, which
is structurally correct but independent of the real topology, will
be obtained by the attacker. Experiments show that ProTO is
able to effectively disrupt adversarial topology inference and
lead to the topology inferred by the attacker close to the fake
topology. We also prove that an attacker gains no information
of real network topology from the fake topology.
Minimum disruption of packets: If a packet is identified as a
probe packet, it will be delayed by ProTO. As the identification
mechanism allows for false alarms, we must ensure that (i)
the delay performance degradation of the packet is minimized
such that a misidentified packet will have the minimum delay
penalty, and at the same time (ii) topology obfuscation is
achieved. We use an optimization framework to solve the
objective. Experimental results show that ProTO leads to an

overall network delay degradation of 1.3% - 2.0%.

II. MODELS AND RESEARCH SCOPE

In this section, we present network and attack models,
introduce the research problem, and present an overview of
the ProTO system.

A. Network and Attack Models

Though topology inference techniques may be utilized for
network management and have been supported by technology
companies (e.g., Ericson [18], Cisco [19], Microsoft [20],
Huawei [21]), they can be often leveraged by adversaries to
obtain the topology of a network even when the network has
no desire to disclose such information [10], [24], [25]. As the
fundamental information for packet routing and forwarding,
the knowledge of network topology can be utilized by attackers
to advance their malicious purposes. Common attacks that can
use topology information to advance or exacerbate impacts in-
clude Distributed Denial-of-Service (DDoS) attacks [9], [10],
[23], Domain Name System (DNS) poisoning [26], [27], and
Internet censorship [28]–[30].

In this research, we consider a network connected to a
larger network system (e.g., the Internet). The nodes inside the
network are cooperating with routing/forwarding of packets
traveling through the network. There exists an attacker that
has no prior knowledge of the network topology but aims to
infer the topology information. To this end, the attacker can
place or use nodes outside the target network to launch an
external end-to-end topology inference.

External end-to-end topology inference follows a tree struc-
ture for packet probing and topology recovering, in which
the attacker uses one source and a set of receivers R =
{1, 2, · · · , R} (R is the number of receivers) outside the
network to infer the network topology. As an example shown
on the left-hand side of Figure 1, let T = (V,L) denote the
topology tree of the target network with node set V and link
set L. The attacker’s source s is connected to the root of the
tree, and each receiver has a path to one leaf of the tree. A link
with its endpoints, which is neither the root or a leaf node,
is called an internal link in T . Tree structure based topology
inference is widely adopted to obtain a real network topology
[31]. A more complicate topology (e.g., mesh networking) can
be also obtained by constructing multiple trees with different
root nodes [31].
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Fig. 1. An example for malicious topology inference.

In malicious topology inference, the attacker sends probe
packets from source s, which pass through different paths



inside the network to receivers R to obtain end-to-end path
measurement results, such as packet loss rate or packet delay.
In this paper, we use the delay metric as the measurement
metric as it is the most widely-used one in topology inferences.

The design intuition of topology inference is that when
packets are forwarded from the source to the receivers, they
may go through shared links inside the network before they
split and reach different receivers; therefore, the network
topology fundamentally affects the correlations of delays ob-
served at different receivers. In particular, Denote by xi,j the
correlation delay for a pair of receivers i and j (i, j 2 R),
and xi,j is the sum of the delays on all shared links between
the end-to-end path from the source to receivers i and the
end-to-end path from the source to receiver j (e.g., the link
between nodes a and b is only the shared link between source
to receiver 1 and source to receiver 2 in Figure 1). Approaches
[12]–[17] have been developed and used by the attacker to
compute correlation delays {xi,j}i,j2R and based on which
the complete network topology can be recovered.

As Figure 1 shows, when there is no protection deployed,
the attacker is able to recover the topology Ttrue. Note that
a non-branching node (i.e., node with less than two child
nodes) is not identifiable in topology inference [17]. Thus,
the recovered topology tree is a logical tree, which consists
of branching nodes of the real topology and the logical links
between them. For example, nodes c and g are merged as node
3 in the recovered logic tree Ttrue in Figure 1.

B. Design Objectives

It is essential to develop effective countermeasures to mit-
igate the risk of topology leakage due to external end-to-
end topology inference. Traditionally, a potential way for
designing countermeasures is to first identify possible probe
packets then disable them (e.g., via banning the prober’s IP
address). However, the topology information of a network is
relatively static information, and a network does not frequently
change its network topology configuration. This means that an
attacker can always try to send probe packets from time to
time to obtain such information. The information is obtained
as long as the attacker succeeds once. Moreover, disabling
misidentified legitimate traffic may significantly degrade the
network performance. Hence, the effectiveness of this tradi-
tional detect-then-disable approach solely relies on the com-
plete accuracy of identifying malicious behavior, which can
be quite challenging.

Our perspective is that instead of designing completely
accurate identification and disabling probe packets from any
identified source, we can relieve the burden of identification
and proactively delay (potentially malicious) packets going
through the target network. Therefore, we adopt a detect-then-
obfuscate strategy. Specifically, we need a probing behavior
identification algorithm that can be (even coarsely) designed
biased towards a very high detection rate but allows for a
slight or moderate false alarm rate: any malicious probing
behavior can be identified and some legitimate traffic may also
be misidentified. When a source is identified as a potential

prober, we do not drop all of its packets, but proactively delay
its packet forwarding with minimum disruption to prevent
topology inference. In this way, a small amount of legitimate
traffic under false alarm can also go through the network with
minimum performance degradation.

Through proactively delaying malicious probe packets, net-
work administrators do not need to suppress malicious topol-
ogy inference by disabling the external end-to-end measure-
ment, but can deliver a structurally accurate yet fake topology
to the attacker. Thus, the design deceives the attacker and
decreases the possibility of further inference attempts. We
design a practical system ProTO that adopts this proactive
topology obfuscation strategy to combat malicious inference
and ensure the confidentiality of network topology.

C. Overview of ProTO System Design

We develop the ProTO system for a target network to
achieve the design objectives. Figure 2 shows the system
architecture of ProTO, which consists of two major modules:
(i) identification and manipulation module and (ii) topology
control module.
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Fig. 2. The system architecture of ProTO.

Identification and Manipulation Module: this module
first identifies the probe packets and then manipulates their
forwarding delay inside the network according to the topology
obfuscation specified by the topology control module. In
Section III, we propose a lightweight machine learning based
method to classify probe packets, which ensures a very high
detection rate and also tolerates a low false alarm rate.

Topology Control Module: the module provides a uniform
control interface for network administrators to manage the
ProTO system. It generates obfuscated topologies and asso-
ciated packet delay manipulation criteria as the outputs to
the identification and manipulation module to delay identified
probe packets. In Section IV, we formulate the topology
obfuscation strategy that intentionally delays identified probe
packets such that an attacker using topology inference only
obtains a structurally correct yet fake topology, which is
independent of the real network topology.

III. PROBE PACKET IDENTIFICATION

As discussed in Section II-C, the identification and ma-
nipulation module in ProTO aims to remove the burden of
ensuring complete accuracy and design a probing identification
mechanism biased towards a very high detection rate. This



indicates that (i) a very high detection rate means any mali-
cious probing behavior should be identified; (ii) it unavoidably
leads to a number of false alarms (because there is always
a trade-off between detections and false alarms). Although
legitimate traffic that is misidentified may be intentionally
delayed, ProTO ensures that the overall network performance
loss is very limited according to the topology obfuscation
mechanism offered in Section IV.

Identifying probe packets is essentially a data classification
problem. In this section, we propose a machine learning based
framework for efficient classification.

A. Identification Model

The identification model is designed as an incremental semi-
supervised learning framework [32], [33], which is suitable
for the scenarios with limited amount of labeled data. Before
the deployment of ProTO, the system first performs a self-
training phase to collect the initial training data, including
the packets labeled as either probe or non-probe packets.
This training dataset is then used to build the semi-supervised
classifier. When ProTO is online, it continues to collect packets
as non-labeled data. Then, feature data extracted from these
collected packets becomes testing data that will be classified
by the initial classifier and be added to the training set to
incrementally improve the classification performance.

We develop a lightweight k-Nearest Neighbor (light-k-NN)
approach to identify probe packets. Different to traditional k-
NN, light-k-NN is more suitable for our use case by adopting
two designs: 1) a multi-round dynamic method to adaptively
train the weights for different features is designed. This
method continuously tunes the weights with the increase of
data size when the system is online. 2) a voting-based lazy-
learning update strategy is implemented. Under this strategy,
the incremental update of the data pool indeed increases the
representativeness. At the same time, it maintains the data
pool in a limited size, such that the performance and space
overhead does not increase. We present the two design details
in Sections III-B and III-C, respectively. In this way, light-
k-NN is as easy as traditional k-NN to be used, but is more
suitable for ProTO for real-time network devices.

Central to light-k-NN is the notion of distance between
packets. In particular, the distance D(P, P 0) between two
packets P and P

0 is calculated by computing the distance
between their numerical feature vectors, i.e.,

D(P, P 0) =
X

1nF

wn|fn(P )� fn(P
0)|, (1)

where fn(P ) and fn(P 0) denote the n-th entries of the feature
vectors of packets P and P

0, respectively; F is the number of
features used for packet classification; and wn is the weight
of the n-th feature. Under light-k-NN, if a packet is closer to
the k packets identified as probe packets previously, it will be
classified as a probe packet.

The key differences between probe packets and normal data
packets are not only the characteristics of a single packet, but

also the correlation relationships among different packets [12]–
[21]. These correlation relationships reflect a holistic transmis-
sion patterns of probe packets. Unless not using external end-
to-end inference, these holistic patterns cannot be evaded even
if the attacker actively disguises its probe packets. In particular,
we adopt the features listed in [34] for classification.

The vector W = [w1, w2, ..., wF ] includes the weights for
all features in computing the distances between packets. These
weights are computed initially from the training dataset in the
self-training phase and fine-tuned during the online operation.

B. Training the Weights

In comparison to traditional k-NN classifiers which assign
either no weight or static weights to different features [35]–
[37], light-k-NN adopts a multi-round dynamic method to
adaptively tune the weights online. In particular, we first
initialize all weights as W0 = {1, 1, ..., 1}, then follow (1)
to calculate their k-NN distances and classify all the packets
in training dataset as either probe or normal. Denote by
Sprobe or Snormal as the sets that contain probe packets
and normal packets, respectively. When ProTO is online and
starts to monitor packets, we use a two-step training procedure
to tune the weights for different features.

Step 1: In this step, we orient to examine the correctness
and usefulness for each feature in the calculation of k-NN
distance following the current weight set. The objective for
this examination is to check if a feature is less-weighted
or over-weighted in the calculation. Specifically, for each
packet P 2 Sprobe , we choose m packets in Sprobe closest
to P to form a set S1 and m packets in Snormal closest
to P to form a set S2. Then, define the per-feature dis-
tance for feature n 2 [1, F ] between P and P

0 2 S1 as
Dn(P, P 0) = |fn(P ) � fn(P 0)|, and compute the set of all
per-feature distances {Dn(P, P 0)}P 02S1 . Let dmax and dmean

be the maximum and mean values of the set, respectively.
Then, for feature n, compute all per-feature distances between
packet P and P

00 2 S2 to obtain {Dn(P, P 00)}P 002S2 , in
which the number of per-feature distances larger than dmax is
denoted by C1(P, n) and the number of per-feature distances
smaller than dmean is denoted by C2(P, n). Finally, we
compute the sum C1(n) =

P
P2Sprobe

C1(P, n) and the sum
C2(n) =

P
P2Sprobe

C2(P, n), respectively.
Step 2: This step aims to optimize the calculated k-NN

distances by adjusting the weight for each feature based
on the results of step 1. A large value of C1(n) indicates
feature n is useful for identifying probe packets and should
be given more weight. By contrast, a large value of C2(n)
indicates that packet P 2 Sprobe has a small per-feature
distance to normal packets, thus feature n is not an evident
feature to differentiate the probe packet from normal packets
and should be less-weighted. Accordingly, we adjust the
weights for different features as an online tuning algorithm.
For each packet arrival, we compare C1(n) with C2(n) for
each feature n, and adjust the value of its weight wn by
�wn = (C1(n) � C2(n))q/(m|Sprobe |), where the step q is
set to be 0.01 by default.



C. Incrementally Updating Training

Since the initial training dataset collected from self-training
before the system deployment is limited, incrementally updat-
ing the training dataset by adding the new classified data can
improve the k-NN classifier when the system is online.

However, increasing the size of training dataset will also
lead to a computational burden and space overhead, we
develop a method that can ensure light-k-NN improves the
accuracy incrementally, while also limiting the training size.
In particular, we implement a voting system to maintain a data
pool for the active training dataset, which contains two classes:
probe or normal. The system maintains an upper bound
of the number of packets for each class. When an incoming
packet P is classified into a class C 2 {probe,normal},
the vote count of each of the k nearest packets in the training
dataset of class C closest to P will be incremented by 1
because they are considered useful for classification.

The new packet P will be then added into the training
dataset of class C. If the number of packets in class C is
greater than the upper bound, the packet with the least votes
will be removed from the training dataset of class C. It can be
expected that through this voting system, more packets close
to the decision boundary will be kept and packets that are less
important to the classification will be gradually removed to
limit the training dataset size. For a newly added packet, its
number of votes is initialized as the average number of votes
of all other packets in its class.

IV. TOPOLOGY OBFUSCATION

Once packets are identified as probe packets, they should be
intentionally delayed for topology obfuscation. In this section,
we design the topology obfuscation technique for the topology
control module in ProTO to i) ensure the attacker only obtains
a fake topology and ii) limit the cost of network efficiency. We
first formulate the topology inference problem, then present
our proactive topology obfuscation technique.

A. Inference Formulation

We first formulate the external end-to-end topology infer-
ence as a fundamental mathematical model. As discussed in
Section II-A, the goal of the attacker is to obtain the topology
tree of the target network by sending probe packets going
through the network and measuring the correlation delays
{xi,j}i,j2R. The set of all possible topology trees is denoted
as F , and we call F a forest . We denote the delay on link
l 2 L as µl. Then, the relationship between correlation delays
{xi,j}i,j2R, the real topology T , and the link delays {µl}l2L
can be formulated in a linear way as

x = Aµ, (2)

where x = [x1,2 , x1,3 , · · ·x1,R , x2,3 , x2,4 , · · · , x2,R , · · · , xR�1,R ]
T

(the operator ·T denotes the matrix transpose) (i.e., x is
obtained by stacking all elements in {xi,j} into a column
vector); the vector µ = [µ1, µ2, · · · , µL]T with L being the
number of internal links in the network; and A = [ak,m] is
called the routing matrix, which depends on the topology T .

In particular, element ak,m in A has value 1 if the k-th link
of the network is shared by the receiver pair corresponding
to the j-th element in x, and value 0 otherwise.
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Fig. 3. An example: routing matrix A of tree T .

We use a simple example to demonstrate how the routing
matrix is determined. As shown in Figure 3, there are 6
receivers and thus the number of different receiver pairs is�6
2

�
= 15. In tree T , the link set is {1, 2, 3, 4, 5}. The

routing matrix A = [ak,m] is therefore a 15-by-5 matrix with
1  k  15 and 1  m  5. In particular, ak,m is 1 if the m-
th link is a shared link for the k-th receiver pairs. For example
in Figure 3, the pair of receivers 1 and 2 (which share link 1
on their paths) corresponds to x1, therefore a1,1 = 1.

Based on (2), we write the probability density of x as
p(x|A,µ). The likelihood function of T can be written as

L(x|T ) ⌘ p(x|A, bµ). (3)

The MLE obtains the topology bT that maximizes the likeli-
hood by

bT ⌘ argmax
T 2F

L(x|T ). (4)

The calculated bT is the desired topology of the target network
in external end-to-end topology inference.

B. Topology Obfuscation

Topology obfuscation aims to camouflage the attackers by
misleading them to recover a fake topology in the inference.
From the formation of inference, it is obvious that the network
can manipulate the path measurement results to achieve this
goal. Intuitively, we should achieve the best obfuscation effort
by maximizing the difference between the recovered topology
and the real topology. However, if the attacker is aware of the
defender’s goal (e.g., maximizing the difference), the attacker
may try to reverse the real topology from recovered topology
via finding the topology that has the maximum difference.

A successful topology obfuscation strategy should deliver
a non-reversible fake topology and avoid the aforementioned
situation. From the mathematical perspective, a randomly
generated Am will maximize the difficulty to recover the
real topology. We present a theoretical analysis for random
generation of fake topology in Section IV-C. In particular,
we randomly generate a fake topology Am independent of
the real topology A in (2). Then, we intentionally affect
the probe packets going through the network to influence
the path measurement results of an attacker such that it
obtains Am instead of A from topology inference. To this



end, theoretically, based on the underlying formulation (2)
for topology inference, we multiply by a manipulation matrix
F both sides in (2) and obtain Fx = FAµ, where the left-
hand side Fx represents the manipulated measurement results
observed by the attacker. In order for the attacker to obtain
the fake topology Am based on the observation Fx using
MLE. This linear equation must hold Fx = FAµ = Amµ.
Therefore, our goal of topology obfuscation is to find the
manipulation matrix F such that

FA = Am, (5)

given the real topology A and the fake one Am. Note that
(5) is obtained based on the assumption that the attacker
will use MLE to estimate the topology. The MLE generally
minimizes the estimation error in statistical inference [38].
Thus, obfuscation based on (5) can be considered as a min-
max strategy to disrupt the best performance that can be
obtained by the attacker.

C. Fake Topology Generation and Security Analysis

To successfully deliver a non-reversible fake topology, the
control module in ProTO randomly generates the fake matrix
Am once the system is deployed. We develop a random
generation algorithm to get a structurally correct yet fake
topology Am that is independent of A. Specifically, suppose
A is an m-by-n matrix, ProTO keeps generating an m-by-n
matrix with all elements randomly selected from {0, 1} until
the generated matrix represents a connected tree structure.
Then, ProTO uses the generated matrix as Am for topology
obfuscation. In case the attacker may notice the obfuscation
efforts, ProTO will keep the generated Am as the target fake
topology for a certain time so the attacker will always obtain
the same topology even with multiple inferences.

We analyze the information security of the proposed random
fake topology generation. The successful topology obfuscation
strategy should ensure the attacker cannot derive the real
routing matrix A even with the knowledge of the randomly
generated matrix Am.

Mathematically, we analyze the security in the form of
entropy, which denotes the average uncertainty of the topology
to the attacker. For the attacker without the initial knowledge
of the matrix A, A can be treated as a random matrix and
its entropy is defined as H(A) = �

P
a2A PA(a) logPA(a),

where PA(a) is the probability when A = a, a is a specific
topology matrix. Similarly, the entropy of A conditioned
on the attacker knowing Am is defined as H(A|Am) =P

am2Am
PAm(am)H(A|Am = am), where PAm(am) is

the probability when Am = am. Due to the independence
between Am and A, H(A|Am = am) = H(A) and thus
H(A|Am) = H(A), which indicates the knowledge of Am

gives the attacker no information of real routing matrix A.

D. Optimization based Topology Obfuscation

After Am is generated, the topology control modules com-
putes the manipulation matrix F based on (5). It is worth
noting that the topology matrix A is an m-by-n matrix with

m > n. Thus, there will be infinite solutions for F in (5). As
a result, we need to find the best solution to (5).

First, not all solutions can be practical in real-world systems.
As Fx represents the path measurement delays observed by
the attacker, Fx should have comparable values to the original
measurement x. Thus, we should impose a constraint in
searching for F such that 8x 2 Fx� x, x 2 [0, �max ], where
�max is called the maximum allowed deviation for the delay.
Note that x should not be less than 0 because obfuscation
efforts may not be able to decrease the packet delay due to the
physical constraint of the network system, but it is feasible to
intentionally increase the packet delay to manipulate the path
measurements through the network.

Then, we transfer the problem of finding F such that
FA = Am given aforementioned constraint into the following
optimization problem

minimize
F

kFA�Amk2 , (6)

subject to 8x 2 Fx� x, x 2 [0, �max ].

There exists a tradeoff if choosing the value of �max for
topology obfuscation: a large value can increase the network
performance overhead; and a small value may decrease the
effectiveness of the obfuscation efforts as the search range
in the optimization (6) is limited. For the default setting, we
choose the maximum value occurred for each path in normal
measurements as default �max .

E. Obtaining Manipulation Matrix F

In (6), the manipulation matrix F to be found is an m-
by-m matrix, A and Am are m-by-n matrices, represent-
ing the real topology and the fake topology, respectively.
To solve (6), we first write F = {fi,j}, A = {ap,q}
and Am = {bap,q}. Let ai = [a1i, a2i, ..., ami] and
f = [f11, ..., f1m, ..., fm1, ..., fmm]T , then it holds that
kFA�Amk2 = kMf �mk2, where M is an m ⇥ n

by m ⇥ m matrix satisfying M = [B, ..., B]T ; B =
diag(a1, a2, ..., am); and m is a column vector with m

2 ele-
ments with the k-th element mk in m being âp,q in Am, where
p =

⌅
k
n

⇧
and q = k � pn. Let H = diag(xT

, x
T
, ..., x

T ),
we rewrite (6) as

minimize
f

f
T
M

T
Mf � 2mMf (7)

subject to 0  Hf  xmax ,

where xmax denotes the maximum allowed delays for all links
after obfuscation, each of whose elements is set to be the
normal link delay in the network plus �max . Thus, solving (6)
is equivalent to solving (7). In (7), MT

M is a semi-definite
matrix and therefore (7) can be solved efficiently by quadratic
programming in polynomial time.

F. Proactively Delaying Probe Packets

After probe packets are identified and the manipulation ma-
trix F is calculated, the topology control module sends F to the
identification and manipulation module for delay manipulation
of probe packets. Specifically, ProTO first calculates the truth



correlation delay for each pair of receivers based on the current
link performance metrics in its network. Then, it computes the
difference between the true correlation delay and the desired
correlation delay based on the manipulation matrix F. Finally,
ProTO delays a probe packet by the time difference between
the two correlation delays. As aforementioned, the light-k-NN
identification framework in ProTO is designed biased towards
a very high detection rate, while allowing false alarms. Such a
design ensures obfuscating the topology by delaying all probe
packets at the cost of a slight network performance degradation
for wrongly identified normal data packets.

V. SYSTEM IMPLEMENTATION AND EVALUATION

In this section, we use different network scenarios based
on real world topologies to evaluate the effectiveness and
efficiency of the proposed ProTO system. We first present the
implementation of ProTO and setups of the evaluation testbed.
Then, we evaluate the effectiveness of the proposed probe
packet identification algorithm (i.e., light-k-NN) in the iden-
tification and manipulation module. Finally, we provide and
discuss the overall performance against adversarial topology
inference by successful topology obfuscation.

A. Implementation and Experimental Setups

ProTO is implemented in P4 [39] integrated with Python.
P4 is a domain-specific language (DSL) for programming the
data plane of network forwarding devices (e.g., switches and
routers). In our design, the P4 program mainly focuses on
packet processing related tasks, including packet capturing,
feature extracting and packet manipulation (i.e., delaying the
packets). While the algorithms used to generate the fake
topology Am and compute the manipulation matrix F are
written in Python. The P4-based implementation for packet
processing is hardware independent (i.e., requiring no knowl-
edge of hardware during development) and can be compiled
according to hardware specifications into realistic devices.

We use three real-world network topologies from Internet
Topology Zoo [40] in the evaluation, including a small, a
medium and a large network as shown in Figure 4. We create
these three networks on two high-performance computing
workstations. Each network node is created as an independent
virtual machine that runs OpenWrt [41] as the operating
system. OpenWrt is an open source Linux based operating
system that can work as routing management system. The
advantage of choosing OpenWrt is that it can compatibly
execute P4-based code.

Claranet Switch Cogent

Fig. 4. Structures of three collected topologies.

We collect various types of data packets by running different
network applications, including web browsing, file transfer,
online chatting, and video streaming on a local-area network,
and replay these data packets as the background network
traffic in our experimental network. In this way, we simulate
a realistic use scenario in which probe packets are mixed
with regular data packets going through a target network. We
also tune the amount of background traffic to measure the
performance in different network traffic conditions. For the
low utilization condition, the background loads for different
links range from 5% to 50%, with an overall load of 30%;
for the high utilization condition, the loads for different links
range from 10% to 90%, with an overall of 45%.

B. Performance of Probe Packet Detection

To evaluate the probe packet detection performance of the
proposed light-k-NN classifier, we first define two performance
metrics (i.e., detection rate and false alarm rate); then we
use these metrics to quantitatively examine if our light-k-NN
design can achieve the design goal of guaranteeing the con-
fidentiality of network topology by ensuring the enforcement
of our detect-then-obfuscate strategy.

1) Performance Metrics: We evaluate the identification
performance of the proposed light-k-NN classifier from two
perspectives: 1) detection rate, which is defined as the number
of probe packets correctly identified divided by the total
number of probe packets, and 2) false alarm rate, defined as
the number of normal packets misidentified as probe packets
divided by the total number of all normal packets.

2) Detection Performance: The performance of the pro-
posed light-k-NN classifier to detect probe packets is evaluated
on the three networks. We find that the evaluation results in
terms of detection and false alarm rates are nearly the same
under low and high utilization conditions. Table I shows the
evaluation results under the high network utilization condition.
In the experiments, the size of the initial training dataset is
chosen to be 500, 1000, 2000, and 3000. As discussed in
Section III-C, ProTO incrementally increases the training size
until an upper bound is reached. The incremental updating
scale is defined as the ratio between the upper bound and the
initial training size. In our experiments, the scale is selected
from [1.0, 1.5, 2.0, 2.5] and we also evaluate the case of no
online training updating as shown in Table I.

Impact of initial training dataset: We can observe in
Table I that the size of initial training has a substantial impact
on the detection performance of the light-k-NN classifier.
Specifically, when the size increases from 500 to 2000, the
detection rate increases substantially in all scenarios (i.e.,
in different networks with different updating scales). For
example, the detection rate improves from 94.5% to 99.7%
in Claranet with updating scale of 1.0. At the same time, the
false alarm rate also decreases (e.g., the rate decreases from
11.4% to 3.4% in Claranet with updating scale of 1.0).

Impact of incremental updating: It is seen in Table I that
the increase of the updating scale will lead to performance
improvement of the classifier. For example, in Claranet, when



TABLE I
DETECTION PERFORMANCE FOR DIFFERENT SIZES OF INITIAL TRAINING DATASET AND UPDATING SCALES.

Topology Size of Initial Incremental Updating Scale During Online Training
Training Dataset No Updating 1.0 1.5 2.0 2.5

Claranet

500 D=0.922, F=0.143 D=0.945, F=0.114 D=0.961, F=0.096 D=0.978, F=0.087 D=0.982, F=0.079
1000 D=0.960, F=0.095 D=0.976, F=0.076 D=0.985, F=0.053 D=0.992, F=0.042 D=0.993, F=0.035
2000 D=0.985, F=0.040 D=0.993, F=0.035 D=0.997, F=0.034 D=0.999, F=0.030 D=0.999, F=0.028
3000 D=0.991, F=0.038 D=0.997, F=0.034 D=0.998, F=0.030 D=0.999, F=0.028 D=0.999, F=0.026

Switch

500 D=0.922, F=0.143 D=0.945, F=0.115 D=0.960, F=0.086 D=0.977, F=0.078 D=0.981, F=0.070
1000 D=0.960, F=0.095 D=0.975, F=0.077 D=0.984, F=0.054 D=0.991, F=0.043 D=0.992, F=0.036
2000 D=0.985, F=0.040 D=0.993, F=0.035 D=0.996, F=0.034 D=0.999, F=0.030 D=0.999, F=0.028
3000 D=0.990, F=0.039 D=0.997, F=0.034 D=0.997, F=0.031 D=0.998, F=0.028 D=0.999, F=0.026

Cogent

500 D=0.920, F=0.144 D=0.943, F=0.116 D=0.960, F=0.088 D=0.976, F=0.078 D=0.980, F=0.070
1000 D=0.959, F=0.097 D=0.974, F=0.077 D=0.983, F=0.054 D=0.990, F=0.044 D=0.992, F=0.037
2000 D=0.984, F=0.041 D=0.992, F=0.037 D=0.995, F=0.035 D=0.999, F=0.033 D=0.999, F=0.030
3000 D=0.989, F=0.039 D=0.995, F=0.036 D=0.997, F=0.033 D=0.998, F=0.030 D=0.998, F=0.028

1D = detection rate, F = false alarm rate. 2The Size of Initial Training Dataset indicates the number of data points for both probe packets and normal packets in the initial
training dataset. 3The Incremental Updating Scale indicates the scale of active training dataset (compared with the initial training dataset) during online training. For example,
scale = 1.0 means the packets in training dataset will be updated during online training, but the total number of packets will keep the same with the initial dataset. While No
Updating indicates the training dataset will not be updated during online training.

there is no online updating, the classifier with the initial
training size of 500 has a detection rate of 92.2% and a false
alarm rate of 14.4%; when the classifier incrementally updates
its training and sets the updating scale to be 2, the detection
rate is improved to 97.8% and the false alarm rate is reduced
to 9.8%. Overall, when the updating scale becomes 2.5, the
classifier achieves a detect rate of 98.0% – 99.9% and a false
alarm rate of 2.6% – 7.9% in the three network scenarios.

Detection rate and false alarm rate over time: Based
on the evaluation results in Table I, we set the size of
the initial training dataset to 2000 and the updating scale
to 2 for follow-on experiments. The setups achieve a good
balance between the probing detection performance and the
computational complexity incurred by the detection. Figure 5
shows the detection rate achieved by the light-k-NN classifier
as the number of probe packets sent to ProTO. As we can see
from the figure, when the ProTo is online and the attacker starts
to send probe packets, the detection rate is gradually improved
over time, reaching 99.9% in all three network scenarios.
Figure 5 also shows the ratio of the online training size to
the initial training size during incremental online updating in
ProTO. The figure shows that the ratio increases linearly and
eventually reaches the updating scale 2.0.

Figure 6 shows the false alarm rate and the ratio of the
online training size to the initial training size, as functions
of the number of normal packets sent to ProTO. In the
figure, we can see that as ProTO gradually processes more
incoming normal packets, the false alarm rate continues to
drop and eventually remains stable at around 3% for all three
network scenarios. Figures 5 and 6 show that ProTO achieves
a detection rate of 99.9% and a false alarm rate of around 3%
when it processes a sufficient number of packets.

C. Evaluation of Topology Obfuscation

After identification of probe packets, the objective of ProTO
is to intentionally delay these packets in the network such that
the attacker can only obtain a fake topology by using end-to-
end topology inference. To evaluate the effectiveness of the
topology obfuscation in ProTO, we conduct experiments on

Fig. 5. Detection rate for probe
packet identification.

Fig. 6. False alarm rate for probe
packet identification.

the three network scenarios for two cases: (i) no defense is
used to combat topology inference and (ii) ProTO is activated
to obfuscate probe packets. For each network scenario, we run
the experiment 100 times with randomly generated topologies
and average the results under cases (i) and (ii) to evaluate the
effectiveness and cost of ProTO.

1) Effectiveness Metrics: As ProTO aims to mislead the
attacker to obtain a fake topology, it is essential to measure
the difference between the real topology and the fake one that
the attack obtains. A popular metric to measure the difference
between two trees is the Tree Edit Distance (TED) defined in
[42]. TED calculates the difference between two trees T1 and
tree T2 as a set of pre-defined editing operations by which
tree T1 can be mapped/transformed to tree T2.

To make the evaluation more intuitive, we define a similarity
score within [0, 1] based on TED. Given T1 and T2, we first
compute their TED as TED0, then calculate the TED between
T1 and a zero-node tree, denoted by TED1 (which can be
considered as the cost needed to remove everything in T1) as
well as the TED between T2 and a zero-node tree, denoted
by TED2 (which can be considered as the cost needed to
construct T2 from scratch). Then, the similarity score is defined
as similarity score = 1� TED0

TED1+TED2
. The similarity score is

1 if T1 = T2, and has a smaller value if T1 is more evidently
different from T2. We define the benchmark score as the
average similarity score between the real network topology and
a randomly generated topology, and obtain using simulations



Fig. 7. Similarity score between
the inferred topology and the real
topology without protection.

Fig. 8. Similarity score between
the inferred topology and the real
topology under protection.

Fig. 9. Similarity score between
the inferred topology and the
intended topology.

Fig. 10. The performance cost of
normal packets misidentified
by ProTO.

that the benchmark score is 0.6. Hence, we consider ProTO
to be effective if the the similarity score between the real
topology and the inferred topology is close to 0.6.

2) Evaluating Effectiveness of Topology Obfuscation: We
first consider case (i) in which there is no defense for the
networks. Figure 7 shows the similarity score between the
real topology and the inferred topology, as a function of the
number of probe packets (the minimum number is 100) sent
along each path between the source and a receiver under
topology inference. It is observed in Figure 7 that if no defense
deployed, the attacker can easily obtain the real topology with
high accuracy. For example, if the attacker send 10000 probe
packets for each path between the source and a receiver, it is
able to recover the topology with a similar score close to 1.

We then consider case (ii) in which ProTO is deployed.
Figure 8 depicts the similarity score between the real topology
(under ProTO’s protection) and the inferred topology, as a
function of the number of probe packets sent along each path
between the source and a receiver. The figure shows that the
similarity score between the real topology and the inferred
topology is significantly reduced to around the benchmark
score of 0.6. This indicates that the inferred topology under
ProTO has little difference from a random topology and
therefore ProTO is effective against topology inference.

We further analyze the similarity score between the inferred
topology and the fake topology Am that is generated according
to Section IV-C in ProTO’s control module to evaluate the
difference between the intended topology by ProTO and the
inferred topology by the attacker, which is shown in Figure 9.
We can find in Figure 9 that overall, the optimization based
topology obfuscation in (6) delivers an intended topology with
high accuracy to the attacker.

3) Performance Cost of Topology Obfuscation: ProTO un-
avoidably introduces the network performance cost by de-
laying normal packets going through the network that are
misidentified as probe packets. We aim to measure the perfor-
mance degradation due to false alarm and intentional delaying.
We define the performance cost as the ratio of the extra delay
incurred by ProTO to the original delay for a normal packet
going through the network. For each of the three network
scenarios, we measure (i) the performance cost of normal
packets that are misidentified as probe packets and delayed
by ProTO and (ii) the average performance cost of all normal
packets (that are either correctly identified or misidentified)

TABLE II
AVERAGE PERFORMANCE COST FOR ALL NORMAL PACKETS.

Low Utilization High Utilization

Claranet 1.28% 1.93%
Switch 1.33% 1.95%
Cogent 1.35% 1.99%

going through the network.
Figure 10 shows the performance cost in case (i) in which

only misidentified normal packets are measured. From Fig-
ure 10, we observe that ProTO increases the delay of a
misidentified normal packet by 31%-37% under the low uti-
lization condition, and by 39% - 45% under the high utilization
condition. As only a limited number of normal packets can be
misidentified by ProTO (e.g., 3% false alarm rate shown in
Figure 6), the overall performance disruption is expected to
be small for legitimate traffic. Table II shows the performance
cost in case (ii) in which all normal packets going through the
network are measured to compute the average performance
cost. From Table II, we can find that the average cost due to
the deployment of ProTO is around 1.3% and 2% for the low
and high utilization conditions, respectively.

As result, it is concluded that ProTO is an effective system
to combat adversarial topology inference with low perfor-
mance cost.

VI. CONCLUSIONS

In this paper, we provide a systematic study on effectively
defending against adversarial topology inference. We develop
a practical system ProTO that adopts a detect-then-obfuscate
framework to combat any potential attack. The ProTO system
consists of two major modules: (i) a light-k-NN probing
behavior identification mechanism is designed biased towards
a very high detection rate and (ii) a topology obfuscation
design that proactively delays all identified probe packets in a
way such that the attacker will obtain a structurally accurate
yet fake network topology based on the measurements of these
delayed probe packets. Experimental results show that ProTO
can effectively and efficiently combat adversarial topology
inference.
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